
PHISH framework for Streaming Graph Algorithms

Steve Plimpton
Sandia National Labs

CERI/DIMACS Workshop on Streaming Graph Algorithms
Oct 2014 - Sandia

Collaborators: Tim Shead, Jon Berry, Cindy Phillips,
Todd Plantenga, Karl Anderson

PHISH is a simple library for stream processing

Parallel Harness for Informatic Stream Hashing

phish swim in a stream

Open source, BSD license
http://www.sandia.gov/∼sjplimp/phish.html

Commercial: IBM InfoSphere, Esper, SQLstream

Open source: Twitter Storm, S4 (Yahoo!)

Other ?

PHISH is a simple library for stream processing

Parallel Harness for Informatic Stream Hashing

phish swim in a stream

Open source, BSD license
http://www.sandia.gov/∼sjplimp/phish.html

Commercial: IBM InfoSphere, Esper, SQLstream

Open source: Twitter Storm, S4 (Yahoo!)

Other ?

PHISH pheatures

Based on pipeline model:
datums flow thru compute processes (not threads)
move datums between processes via message passing
multiple processes work together to perform analysis
split stream to enable parallelism & store more state

Lightweight, portable C library
Message passing via MPI or sockets (zeroMQ)

Write compute kernels in C, C++, Fortran, Python, ...

No HDFS (parallel file system with data redundancy)

No fault-tolerance (blame it on MPI)

PHISH lingo:
minnow = stand-alone program, link to PHISH lib
school = set of identical minnows (for parallelism)
hook = connection between 2 schools
PHISH net(work) = multiple schools, hooked together
PHISH tales = the manual

PHISH pheatures

Based on pipeline model:
datums flow thru compute processes (not threads)
move datums between processes via message passing
multiple processes work together to perform analysis
split stream to enable parallelism & store more state

Lightweight, portable C library
Message passing via MPI or sockets (zeroMQ)

Write compute kernels in C, C++, Fortran, Python, ...

No HDFS (parallel file system with data redundancy)

No fault-tolerance (blame it on MPI)

PHISH lingo:
minnow = stand-alone program, link to PHISH lib
school = set of identical minnows (for parallelism)
hook = connection between 2 schools
PHISH net(work) = multiple schools, hooked together
PHISH tales = the manual

PHISH net for traditional MapReduce

Scatter

Scatter

Scatter

Scatter

....

Analyze

Analyze

Analyze

Analyze

....

Stats

snapshots IDs

files

Map Reduce

Scatter & analyze minnow schools for parallelism

Convert data from per-snapshot to per-particle

Enables trajectory analysis of individual particles

PHISH script for traditional MapReduce

minnow m scatter file1.dump file2.dump ...
minnow r analyze -dist 3.0
minnow s stats 10000

hook m hashed r
hook r single s

school m 16
school r 16
school s 1 invoke python

Input script ⇒ bait.py ⇒ mpiexec or shell-script

PHISH net for streaming MapReduce

Scatter

Scatter

Scatter

Scatter

....

Analyze

Analyze

Analyze

Analyze

....

Stats

snapshots IDs

Map Reduce

Trigger

running
simulation

Streaming version:

snapshot data processed on-the-fly
user interaction & simulation “steering”

MapReduce is now fine-grained and continuous

Parallel streaming graph algorithms using PHISH

1 Sub-graph isomorphism

2 Triangle enumeration

3 Connected components

All 3 algorithms store entire graph (in distributed memory)

SGI and TriEnum are incremental, not true streaming

CC is constant-time, can keep-up with a stream rate

Sub-graph isomorphism

Data mining, needle-in-haystack anomaly search

Huge semantic graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

Shared-memory algorithm by J Berry, MR with T Plantenga

F 0 0 0 0 0 2 5 3

L

Streaming sub-graph isomorphism

real−time,

RMAT,

or files

Stats

SGI

SGI

SGI

SGI

edges

....

matches

N−step walks

Each edge stored twice, once by each vertex
SGI minnows generate walk 1 step at time ⇒ N iterations
Individual walks dropped if constraint not met
140 lines of Python!

Streaming triangle enumeration

Triangle

Triangle

Triangle

Triangle

....

real−time,

RMAT,

or files

Stats

edges

wedges

edges

triangles

Streaming version of J Cohen, CS&E, 11, 29-41 (2009)
Owners of (I,J) vertices exchange degree/neighbor info
Low-degree vertex does neighbor send
Nth new edge triggers N-1 wedge messages
90 lines of Python

Streaming connected components

Head

H’

T’

Tail

User

real−time,

RMAT,

or files

Edge

........

Work with C Phillips & J Berry

Details from Cindy tomorrow

v3

v6

A
v2

B
v4

C
A B

v4

v5
v3

v1
v2

(v2,v4) (B,v7) (C,v7)

Proc 0
Proc 1

Graph stored hierarchically
edges once, vertices duplicated

Embed queries in stream of edges

are Vi and Vj in same CC
what are components of size < N
and age < A

PHISH supports mixing, ring,
permutation, aging

Throughput benchmark with PHISH

Send zero-length datums along linear chain of processors

Send 1K-length datums at 400K/sec (bandwith limited)

Hashed all-to-all benchmark with PHISH

Send zero-length datums from P/2 procs to P/2 procs

Roll-over due to using multiple cores/node
147M datums/sec on 1024 procs (1 core/node)

FireHose benchmarks via PHISH

Optimized C versions of anomaly detection kernels

Parallelism via hashing to split stream across processes

Generator

Generator

Generator

ReadUDP

KeyHash

KeyHash

KeyHash

KeyHash

Anomaly

Anomaly

serial PHISH = 1/0/1 processes, parallel PHISH = 1/4/2 processes

FireHose benchmarks via PHISH

Optimized C versions of anomaly detection kernels

Parallelism via hashing to split stream across processes

Generator

Generator

Generator

ReadUDP

KeyHash

KeyHash

KeyHash

KeyHash

Anomaly

Anomaly

serial PHISH = 1/0/1 processes, parallel PHISH = 1/4/2 processes

FireHose benchmark results

Dell box: dual hex-core 3.47 GHz Intel Xeons (X5690)

Maximum stream rates with no dropped packets

#1 = fixed, #2 = unbounded, #3 = two-level keys

Implementation Bench # Gen Rate (M/sec) LOC

C++ 2 5.6 275
Python #1 1 0.45 190
PHISH (serial) 2 5.5 390
PHISH (parallel) 4 10.0 525

C++ 1 1.9 415
Python #2 1 0.14 290
PHISH (serial) 1 1.9 525
PHISH (parallel) 2 3.4 665

C++ #3 1 1.5 495

Thanks & links & papers

Open-source packages (BSD license):

http://www.sandia.gov/∼sjplimp/phish.html (PHISH)

http://mapreduce.sandia.gov (MapReduce on top of MPI)

http://firehose.sandia.gov (FireHose - soon)

Papers:

Plimpton & Shead, “Streaming data analytics via message
passing with application to graph algorithms”, JPDC, 74,
2687 (2014).

Plantenga, “Inexact subgraph isomorphism in MapReduce”,
JPDC, 73, 164 (2013).

Berry, et al, “Maintaining CC for infinite graph streams”,
BigMine ’13, 95 (2013).

Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).

